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ABSTRACT 
 

The fundamental aspect of unmanned ground vehicle (UGV) navigation, 

especially over off-road environments, are representations of terrain describing 

geometry, types, and traversability. One of the typical representations of the 

environment is digital surface models (DSMs) which efficiently encode geometric 

information. In this research, we propose a collaborative approach for UGV 

navigation through unmanned aerial vehicle (UAV) mapping to create semantic 

DSMs, by leveraging the UAV wide field of view and nadir perspective for map 

surveying. Semantic segmentation models for terrain recognition are affected by 

sensing modality as well as dataset availability. We explored and developed 

semantic segmentation deep convolutional neural networks (CNN) models to 

construct semantic DSMs. We further conducted a thorough quantitative and 

qualitative analysis regarding image modalities (between RGB, RGB+DSM and 

RG+DSM) and dataset availability effects on the performance of segmentation 

CNN models. 

 
Citation: H. J. J. Brand, B. Li, “Semantic Digital Surface Map Towards Collaborative Off-Road Vehicle Autonomy”, 

In Proceedings of the Ground Vehicle Systems Engineering and Technology Symposium (GVSETS), NDIA, Novi, 

MI, Aug. 11-13, 2020. 

 

1. INTRODUCTION 
Important to path planning and navigation for off-

road ground vehicle systems are digital surface 

models (DSM). Given a 2D grid space 

perpendicular to the Earth’s surface, DSMs report 

the elevation of the ground and objects on ground 

for each grid point.  This encodes 3D geometric 

information about the terrain as well as size/shape 

and location of objects and obstacles. 3D terrain 

information is useful for determining traversability. 

Braun et al [1] used elevation models and slope 

information to describe the traversability of urban 

environments. They validated their method in 

simulation and field measurements. Ohki et al [2] 

developed a path planning method to allow a UGV 

to navigate rough volcanic terrain using extended 

elevation models. Guastella et al [3] also used 

DSMs to conduct traversability estimation in urban 

environments and performed global path planning 

for disaster response scenarios.  

 

DSMs also provide information that allow 

efficiency objectives to be achieved in path 

planning. Hameed et al [4] developed a path 
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planning method based on 3D coverage efficiency 

from DSM information. This allows for more 

efficient coverage and reduced skipping and 

overlap during robotic harvesting procedures. 

Spekken et al [5] developed a method that utilized 

elevation information to reduce disturbances to the 

environment, such as soil erosion, during 

navigation. DSMs are also useful for encoding 

object geometry and location. Oniga et al [6] used 

local elevation maps and object detection from a 

ground vehicle to develop surface models of 

objects in order to perform path planning and 

obstacle avoidance. 

 

Unmanned aerial vehicles (UAVs) have a larger 

view of land cover and are generally used to 

develop large-scale DSMs which are crucial 

towards implementing global path planning for 

unmanned ground vehicles (UGVs) [3], [7], [8]. 

UAVs have less limitations in mobility and benefit 

from a wider viewing perspective than UGVs. 

However, UGV’s payload capacity allows them to 

be better candidates for interacting with the 

environment and achieving missions [7].  For 

outdoor, urban environments UGVs must navigate 

through prepared and unprepared terrain.  Many of 

the existing traversability methods for urban 

scenarios that use DSMs are usually restricted to 

implementation on homogeneous terrain.  To take 

advantage of existing DSM-based UGV navigation 

methods to on-road and off-road terrain scenarios a 

description of the terrain and corresponding 

obstacles common to both terrain environments are 

needed as well as the DSM information. This can 

be provided by a semantic DSM with terrain types 

and corresponding terrain obstacle labels. 

 

A number of works have been conducted on using 

machine learning-based approaches to develop 

semantic land cover segmentation. While this work 

has been developed to explore the effectiveness of 

different strategies to obtain segmentation results, 

there hasn’t been a focus regarding performance 

generalization in relation to data availability and 

applicability to unexplored environments. In our 

work we explore the use of a UAV equipped with 

an RGB (red, green, and blue channel) camera and 

a Lidar sensor to map the Clemson University 

International Center for Automotive Research 

campus (CU-ICAR). Our work used a land cover 

semantic segmentation network for three available 

sensing modalities in our platform RGB, 

RGBDSM, RGDSM, and RGDSM+ (representing 

an extended dataset for the RGDSM sensing 

modality). 

 

2. BACKGROUND 
 There have been a lot of efforts payed in recent 

years to develop semantic maps from aerial 

observations, using multiple sensing modalities. 

This has led to the development of many classical 

machine learning and deep learning approaches. 

Salih et al [9] trained a Maximum Likelihood 

classifier on principal components of the of satellite 

images of the Al-Ahsaa Oasis to classify bare soil, 

sand, urban, vegetation, and water. The satellites 

images were composed of six bands including near-

infrared (NIR), red, green, and blue spectra. Feng 

et al [10] used Random Forests (RF) on RGB 

images and texture feature maps to classify bare 

soil, grass, trees, shrubs, water, and impervious 

surfaces. Liu et al [11] used conditional random 

fields to combine multi-view information and 

context to improve the accuracy of the semantic 

segmentation classifiers from RGB data. The study 

tested RF, Gaussian Mixture Model (GMM), 

Support Vector Machine (SVM), and Deep 

Convolutional Neural Network (DCNN) 

classifiers. RF and DCNN classifiers were found to 

achieve the greatest accuracy.  

 

Šćepanovic et al [12] utilized DCNNs for 

semantic segmentation of C-band synthetic 

aperature radar (SAR) images. They tested the U-

Net, SegNet, DeepLabV3+, BiSeNet, FRRN-B, 

FC-DenseNet, and PSPnet. Al-Najjar [13] used a 

DCNN to segment fused RGB plus DSM (digital 

surface elevation) images. 
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With the various kinds of land cover image 

modalities and datasets, many works seek to 

investigate the contributions of certain sensor 

modes to the classification task. This is important 

as incorporating unrelated inputs to the statistical 

learning tasks degrades classifier performance. 

Much of these considerations are explored in 

classical machine learning approaches. Salih et. al 

[9] reported the eigenvalues (variances) or 

contributions of each channel to the principal 

component inputs to the Maximum Likelihood 

classifier. Feng et. al [10] was able to determine the 

variable importance through a perturbation test of 

the inputs to the RF classifier. This directly allowed 

contribution to classifier performance of each input 

to be analyzed. 
  
With DCNNs this is a more challenging question 

as there are a very large amount features 

influencing the classification outcome. 

Additionally, these features are learned parameters 

where their form or structure are largely unknown 

and black box. In the work of Salih et al [9] the 

performance of a segmentation CNN with RGB 

input was compared to that of an RGB plus DSM 

network. It was found that the RGB plus DSM 

input-based CNN outperformed the RGB input 

based CNN. 

 According to classical machine learning methods 

the B channel is one of the most crucial variables 

for landcover classification when compared to 

texture-based information and multiple spectral 

channels such as R, G, and near-infrared (NIR) [9], 

[10]. The availability of datasets is also crucial to 

generalized segmentation performance. In our 

study we investigate the contribution of inputs vs 

the contribution of data for DNN based 

classification. We further studied this trade-off by 

comparing the performances of four different 

sensing modalities: RGB, RGBDSM, RGDSM and 

RGDSM+ based networks. Effects of pretraining 

were also incorporated in the analysis. 

 

3. METHODOLOGY 
This work deals with two fundamental problems 

in statistical learning: covariate importance and the 

availability of data.  For our approach we consider 

platforms with high resolution RGB camera and 

 

Figure 1: Multiple Image Mode PSPNet Setup. 
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LIDAR sensing modalities, where we want to 

semantically label the data according to the 

International Society for Photogrammetry and 

Remote Sensing (ISPRS) [14] classes: low 

vegetation, trees, roads, buildings, vehicles, and 

clutter. There are two ISPRS urban environment 

datasets that support this labeling application, the 

ISPRS 2D and ISPRS 3D Semantic Labeling 

datasets. The 2D dataset was acquired with three 

main image mode sets: NIR-R-G, RGB, and DSM. 

There were two main image modes in the 3D 

dataset: NIR-R-G and DSM. In relation to the UAV 

platform there are two main modalities of interest 

in relation to the available dataset. There is one 

dataset for the full set of covariates R, G, B and 

DSM. There are two datasets for a subset of 

covariates R, G, and DSM.  

 

With this study we are using PSPNet [15] with a 

ResNet34 encoder for both pretrained (on 

ImageNet [16]) and untrained cases. The input to 

the network is a 512x512xC, where C represents 

the number of input channels depending on the 

image modality. C is governed by three sensors 

modes, RGB, RGBnDSM, and RGnDSM. The 

channel nDSM represents the DSM data 

normalized by regional minimum elevations to 

have a minimum elevation of zero.  Class 

predictions made on orthographic images are 

conducted by making predictions on 512x512 

sections. An illustration of the network is shown in 

Figure 1. 
  
The 2D Semantic Dataset was acquired in 

Potsdam, Germany during Autumn/Winter months 

with many examples of leafless trees.  This dataset 

is composed of 6000x6000 orthomosaic images. 

For this study eleven orthomosaic images are used 

to generate the training andvalidation datasets for 

the RGB, RGBnDSM, and RGnDSM sensor 

modes. The training/validation images are 

generated by randomly sampling 512x512xC 

images from the larger orthomosaic images. The 

training and validation dataset consisted of 14,000 

and 9,000 images respectively. 

 

Additional RGnDSM training/validation data 

were developed from the 3D Semantic Dataset. The 

3D Semantic Dataset consists of 16 orthographic 

images and was acquired in Vaihingen, Germany 

during the Spring/Summer months, containing 

examples of full, leafy trees. The combined larger 

RGnDSM training and validation dataset (termed 

RGnDSM+) consisted of 33,000 and 20,000 

images respectively. Finally, eleven other 

orthographic images from the 2D Semantic 

Dataset, not used to generate the training/validation 

set, were used to test the network performance. 

 

Regarding the in-field data, a UAV instrumented 

with an RGB camera and LIDAR sensor flew a 

flight path over the Clemson University 

International Center of Automotive Research (CU-

ICAR) campus. This campus is a testing site for 

self-driving vehicles for both on-road and off-road 

environments. RGB, RGBnDSM, and RGnDSM 

orthographic images were developed from the data 

to allow for testing the generalization performance. 

 

4. EXPERIMENTS AND RESULTS 
The class predictions from the PSPNet 

segmentation network are according to the 

International Society for Photogrammetry and 

Remote Sensing (ISPRS) [14] class labels and color 

codes: low vegetation (cyan, essentially off-road), 

trees (green), impervious surfaces (white), 

buildings (blue), vehicles (yellow), and clutter 

(red).  

Four PSPNets were trained on four datasets, 

RGB, RGBnDSM, RGnDSM, and RGnDSM+. The 

classification and segmentation performance of the 

networks were evaluated using the mean 

intersection-over-union (mIOU) criteria: 

 

 𝑚𝐼𝑂𝑈(𝐶) =
1

𝑛
∑

𝑝𝑖𝑥𝑒𝑙_𝑠𝑢𝑚(𝐿𝐺
𝐶∩𝐿𝑃𝑆𝑃(𝑋𝑖

𝐶))

𝑝𝑖𝑥𝑒𝑙_𝑠𝑢𝑚(𝐿𝐺
𝐶∪𝐿𝑃𝑆𝑃(𝑋𝑖

𝐶))

𝑛
𝑖=0  (1) 
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Where 𝐿𝐺
𝐶  represents the ground truth class image 

and the 𝐿𝑃𝑆𝑃(∙) represents the network class image. 

According to this metric an ideal segmentation map 

would produce a mIOU value of 1 while an 

incorrect segmentation would result in a mIOU 

value tending towards 0. 

 

4.1. Semantic Segmentation Performance 
Table 1 shows the mIOU per class for the RGB, 

RGBnDSM, RGnDSM, and RGnDSM+ image 

modality networks using a pretrained ResNet34 

encoder. Inspection of Table 1 reveals that the 

RGBnDSM, RGnDSM, and RGnDSM+ networks 

outperform the RGB network with overall 

classification score of the 0.692, 0.707, and 0.685 

for the RGBnDSM, RGBnDSM, and RGnDSM+ 

modalities respectively. Further inspection reveals 

that the DSM channel contributes to increasing 

accuracy for building and tree classes.   

 

Table 2 shows the mIOU per class for the RGB, 

RGBnDSM, RGnDSM, and RGnDSM+ image 

modality networks using a ResNet34 encoder 

without pretraining. Inspection of Table 2 shows 

similar contributions associated with involving 

DSM information with increases in building and 

tree classification accuracy.  

A comparison between Table 1 and Table 2 

reveals identical classification performance for the 

testing dataset for all sensing modalities.  Based on 

the testing set results pretraining offers no 

distinguishable effect to generalized classification 

performance. 

 

The RGnDSM modality has the highest 

classification performance according to the testing 

dataset results. A comparison between the 

RGnDSM and RGnDSM+ networks shows a 

reduction in classification performance accuracy in 

the RGnDSM+ network for every class except the 

vehicle class. This relates to the test set being from 

Potsdam and the RGnDSM+ dataset incorporating 

images from Vaihingen, Germany. This points to a 

challenge related to evaluating the generalization of 

the landcover classification performance. 
 

Because of the considerable resources necessary 

to develop landcover data, it is generally common 

practice to develop datasets for single regions or 

cities and incorporate a subset of the dataset to be 

the evaluation set. This however has implications 

on the generalization of the testing data.  This is 

especially relevant to the UGV navigation chain 

when applying these networks to provide a 

semantic DSM of an unknown environment. 

Table 1: mIOU Class Performance. With pretrained ResNet34 encoder 

 Buildings Clutter Trees Low Vegetation Vehicles Roads/ Sidewalk Overall 

RGB 0.864 0.275 0.668 0.682 0.811 0.778 0.680 

RGnDSM 0.906 0.361 0.703 0.678 0.807 0.785 0.707 

RGBnDSM 0.909 0.284 0.683 0.683 0.808 0.786 0.692 

RGnDSM+ 0.897 0.271 0.691 0.662 0.811 0.779 0.685 

 

Table 2: mIOU Class Performance. Without pretrained ResNet34 encoder 

 Buildings Clutter Trees Low Vegetation Vehicles Roads/ Sidewalk Overall 

RGB 0.861 0.283 0.670 0.687 0.804 0.779 0.681 

RGnDSM 0.900 0.363 0.706 0.685 0.801 0.785 0.707 

RGBnDSM 0.907 0.292 0.684 0.687 0.805 0.788 0.694 

RGnDSM+ 0.897 0.278 0.693 0.668 0.803 0.780 0.686 
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4.2. In-Field Data Test of CU-ICAR Campus 
Both the pretrained and untrained counter parts of 

the RGB, RBGnDSM, RGnDSM, and RGnDSM+ 

networks were used to segment the dataset of 

Clemson University International Center for 

Automotive Research (CU-ICAR) site.  The CU-

ICAR campus was developed based on innovative 

architectural designs which provide a number of 

challenging artifacts not represented in the training 

datasets.  The road leading in the campus is made 

of multi-colored brick instead of asphalt concrete.  

The sidewalks are also made of the same material. 

Many of the buildings have different artistic vented 

metal canopies outlining the roofs and many roofs 

have multiple cascading levels.   

 

Figures 2a-2d are comparative illustrations 

between pretrained and untrained RGB, 

RGBnDSM, RGnDSM, and RGnDSM+ networks 

respectively. 

 

The segmentation performance differences 

between the pretrained networks and the non-

pretrained networks are very apparent despite the 

similarities between Tables 1 and 2. There are very 

few and very small-scale true instances of clutter in 

the ICAR dataset except a slender winding creek 

near the top of the image. Between the pretrained 

and untrained networks there are far fewer 

misclassifications of clutter in the untrained 

networks for each sensing modality.  

 

Figure 2: ICAR Segmentation Results. Low vegetation (cyan, essentially off-road), trees (green), 

impervious surfaces (white), buildings (blue), vehicles (yellow), and clutter (red). 

 

  
(a) (b) 

  

  
(c) (d) 
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Each network has difficulty distinguishing 

shadow from buildings with the RGBnDSM cases 

and the untrained RGnDSM+ case having the most 

success. It is also difficult for the networks to 

classify the tops of ICAR buildings correctly. They 

are mostly misclassified as roads by all the 

networks with the exception of the pretrained 

RGBnDSM and the untrained RGnDSM+ having 

the least difficulty. 

 

From these results, the full RGBnDSM input 

network was able to overcome some classification 

challenges with pretraining however at the expense 

of instability in the clutter class. This instability 

may be attributed to the parameters being 

pretrained on an image classification task rather 

than a segmentation task. While the RGDSM+ 

network was better at detecting low vegetation than 

the RGDSM network it was not able to detect roads 

as well.  Untrained versions of the RGDSM and 

RGDSM+ networks performed better than their 

pretrained counterparts. 

 

5. CONCLUSIONS 
An analysis was conducted regarding the 

generalization of landcover classification networks 

and their applicability to providing semantic DSMs 

from UAV observations for global UGV navigation 

in unknown environments.  The problems studied 

in this work were related to the availability of 

semantic datasets for specific class labels and 

sensor modalities. This creates a tradeoff between 

training DNN on a limited dataset composed of a 

full set of inputs available on the UAV platform and 

training on a larger dataset composed of a subset of 

inputs available. The effects of pretraining on 

generalized performance were also explored along 

with common methods for determining network 

performance generalization. 

 

Based on the results of the study it was determined 

that common methods for determining the 

generalization of the network performance most 

likely should include dataset from unobserved 

cities or entirely different regions.  Testing datasets 

created from a subset of city-wide or region-wide 

datasets are closely related to the training and 

validation datasets and are not good predictors of 

generalized performance.  

 

It was also observed that pretraining can 

potentially aid in improving segmentation 

performance and overcome data unavailability at 

the expense of prediction instability. Performance 

enhancements to segmenting a subset of the 

available input sensor modality on additional 

datasets depends on the nature of the additional 

dataset and whether the missing inputs are 

important observers for classification performance. 

For future work, this tradeoff principle will be 

evaluated on another dataset containing all or a 

subset of the desired labels. 
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